skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kraus, A L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Stellar positions and velocities from Gaia are yielding a new view of open cluster dispersal. Here we present an analysis of a group of stars spanning Cepheus (l= 100°) to Hercules (l= 40°), hereafter the Cep-Her complex. The group includes four Kepler objects of interest: Kepler-1643 b (Rp= 2.32 ± 0.13R,P= 5.3 days), KOI-7368 b (Rp= 2.22 ± 0.12R,P= 6.8 days), KOI-7913 Ab (Rp= 2.34 ± 0.18R,P= 24.2 days), and Kepler-1627 Ab (Rp= 3.85 ± 0.11R,P= 7.2 days). The latter Neptune-sized planet is in part of the Cep-Her complex called theδLyr cluster. Here we focus on the former three systems, which are in other regions of the association. Based on kinematic evidence from Gaia, stellar rotation periods from TESS, and spectroscopy, these three objects are also ≈40 million years (Myr) old. More specifically, we find that Kepler-1643 is 46 7 + 9 Myr old, based on its membership in a dense subcluster of the complex called RSG-5. KOI-7368 and KOI-7913 are 36 8 + 10 Myr old, and are in a diffuse region that we call CH-2. Based on the transit shapes and high-resolution imaging, all three objects are most likely planets, with false-positive probabilities of 6 × 10−9, 4 × 10−3, and 1 × 10−4for Kepler-1643, KOI-7368, and KOI-7913, respectively. These planets demonstrate that mini-Neptunes with sizes of ≈2 Earth radii exist at ages of 40 Myr. 
    more » « less
  2. ABSTRACT Dippers are a common class of young variable star exhibiting day-long dimmings with depths of up to several tens of per cent. A standard explanation is that dippers host nearly edge-on (id ≈ 70°) protoplanetary discs that allow close-in (<1 au) dust lifted slightly out of the mid-plane to partially occult the star. The identification of a face-on dipper disc and growing evidence of inner disc misalignments brings this scenario into question. Thus, we uniformly (re)derive the inclinations of 24 dipper discs resolved with (sub-)mm interferometry from ALMA. We find that dipper disc inclinations are consistent with an isotropic distribution over id ≈ 0−75°, above which the occurrence rate declines (likely an observational selection effect due to optically thick disc mid-planes blocking their host stars). These findings indicate that the dipper phenomenon is unrelated to the outer (>10 au) disc resolved by ALMA and that inner disc misalignments may be common during the protoplanetary phase. More than one mechanism may contribute to the dipper phenomenon, including accretion-driven warps and ‘broken’ discs caused by inclined (sub-)stellar or planetary companions. 
    more » « less